CIMGS: An Incomplete Orthogonal FactorizationPreconditioner

نویسندگان

  • Xiaoge Wang
  • Kyle A. Gallivan
  • Randall Bramley
چکیده

A new preconditioner for symmetric positive definite systems is proposed, analyzed, and tested. The preconditioner, compressed incomplete modified Gram–Schmidt (CIMGS), is based on an incomplete orthogonal factorization. CIMGS is robust both theoretically and empirically, existing (in exact arithmetic) for any full rank matrix. Numerically it is more robust than an incomplete Cholesky factorization preconditioner (IC) and a complete Cholesky factorization of the normal equations. Theoretical results show that the CIMGS factorization has better backward error properties than complete Cholesky factorization. For symmetric positive definite M-matrices, CIMGS induces a regular splitting and better estimates the complete Cholesky factor as the set of dropped positions gets smaller. CIMGS lies between complete Cholesky factorization and incomplete Cholesky factorization in its approximation properties. These theoretical properties usually hold numerically, even when the matrix is not an M-matrix. When the drop set satisfies a mild and easily verified (or enforced) property, the upper triangular factor CIMGS generates is the same as that generated by incomplete Cholesky factorization. This allows the existence of the IC factorization to be guaranteed, based solely on the target sparsity pattern.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Specifying Gaussian Markov Random Fields with Incomplete Orthogonal Factorization using Givens Rotations

In this paper an approach for finding a sparse incomplete Cholesky factor through an incomplete orthogonal factorization with Givens rotations is discussed and applied to Gaussian Markov random fields (GMRFs). The incomplete Cholesky factor obtained from the incomplete orthogonal factorization is usually sparser than the commonly used Cholesky factor obtained through the standard Cholesky facto...

متن کامل

Incomplete self-orthogonal latin squares ISOLS(6m + 6, 2m) exist for all m

Heinrich, K., L. Wu and L. Zhu, Incomplete self-orthogonal latin squares ISOLS(6m + 6, 2m) exist fo all m, Discrete Mathematics 87 (1991) 281-290. An incomplete self-orthogonal latin square of order v with an empty subarray of order n, an ISOLS(v, n) can exist only if v 2 3n + 1. We show that an ISOLS(6m + 6, 2m) exists for all values of m and thus only the existence of an ISOLS(6m + 2,2m), m 2...

متن کامل

New IMGS-based Preconditioners for Least Squares Problems

Convergence acceleration by preconditioning is usually essential when solving the standard least squares problems by an iterative method. IMGS, is an incomplete modiied version of Gram-Schmidt orthogonalization to obtain an incomplete orthogonal factorization pre-conditioner M = R, where A = Q R + E is an approximation of a QR factorization, Q is an orthogonal matrix and R is upper triangular m...

متن کامل

On the existence of nested orthogonal arrays

A nested orthogonal array is an OA(N, k, s, g)which contains an OA(M, k, r, g) as a subarray. Here r < s andM<N . Necessary conditions for the existence of such arrays are obtained in the form of upper bounds on k, given N,M, s, r and g. Examples are given to show that these bounds are quite powerful in proving nonexistence. The link with incomplete orthogonal arrays is also indicated. © 2007 E...

متن کامل

Non-orthogonal spline wavelets for boundary element analysis

Non-orthogonal spline wavelets are developed for Galerkin BEM. The proposed wavelets have compact supports and closed-form expressions. Besides of it, one can choose arbitrarily the order of vanishing moments of the wavelets independently of order of B-splines. Sparse coefficient matrices are obtained by truncating the small elements a priori. The memory requirement and computational time can b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 18  شماره 

صفحات  -

تاریخ انتشار 1997